
I

I

!

I

ii

g

I
I

i
i
I

i

I
I

I
!

I
!

N87 - 24 904 _
DATA COLLECTION AND EVALUATION FOR

EXPERIMENTAL COMPUTER SCIENCE RESEARCH

Marvin V. Zelkowitz

Department of Computer Science

University of Maryland

College Park, Maryland 20742

Abstract

The Software Engineering Laboratory has been monitoring software development at

NASA Goddard Space Flight Center since 1976. This report describes the data collec-

tion activities of the Laboratory and some of the difficulties of obtaining reliable data.

In addition, the application of this data collection process to a current prototyping

experiment is reviewed.

I. INTRODUCTION

There is a significant need to collect reliable data on software development projects in order

to provide an empirical basis for making conclusions about software development methodologies,

models and tools. However, such data is usually hard to collect and even harder to evaluate.

Software is a multibillion dollar industry where 100% cost overruns are common, and mainte-

nance activities can take up to 70/_ of the total cost of the system [11]. The availability of reli-

able data to evaluate competing software development techniques is crucial.

As Lord kelvin stated, "I often say that when you can measure what you are speaking

about, and express it in numbers, you can know something about it, but when you cannot express

it in numbers, your knowledge is of a meager and unsatisfactory kind." The lack of adequate

measures is certainly a problem in the software industry today.

Many of the recent analyses of the software development process are based on data that is

obtained from university experiments. Students often program special problems whose results are

subjected to analysis. This gives the researcher the l0 to 100 data points necessary for statistical

validity of the results. However, by virtue of being part of an academic program, such experi-

ments are necessarily small and usually involve inexperienced programmers. There is a need to

5-27

!

extend the scope of these experiments to a level appropriate to the muitibillion dollar industry.

Most software development data in industry has been collected after the fact. That is, a

project is built and then a pile of documents are handed to a research group for evaluation.

Often, critical information is missing and the results are not what one would expect. Rather than

following the model of archeology - the study of dead software projects, software evaluation must

model sociology - the study of living software societies. Data must be collected from ongoing pro-

jects, but the software sociologists must not impact the objects of their study. Given the need to

finish projects on time and within budgets - a goal too often missed - it is difficult to justify

spending money on data collection and evaluation activities.

Specifically to address these problems, the Software Engineering Laboratory (SEL) was set

up within NASA Goddard Space Flight Center in 1976. The goal was to study software develop-

ment activities within NASA and report on experiences that will improve the process. This report

describes the SEL and its experiences over the last six years.

11- THE SOFTWARE ENGINEERING LABORATORY

In 1976 the SEL was organized to study software development within the NASA environ-

ment. More specifically, its primary charter was to monitor the development of ground support

software for unmanned spacecraft. Each such system was typically 30,000 to 50,000 source lines of

Fortran and took from 8 to 10 programmers up to two years to build. While this environment is

not representative of all software development environments, SEL experiences are generalizable in

some respects:

a) Ground support software includes several program types such as data base functions, real

time processing, scientific calculations and control language functions. The software is largely

implemented in Fortran.

b} By looking at a relatively narrow environment, d:.ta collected from many projects can be

compared. Thus we get some of the benefits of a carefully controlled experiment without the

expense of duplicating large developments. We do not have the problem of looking at a variety of

5-28

I
I

I
I

I
I
I

I
I

I
I

I

I
I

I
I

l
I

I

I
I

l
I

I
I
I
I

I
I

I
I

I

I
I
I

I

I

projects, like compilers, COBOL programs, ground support software, MIS programs and then try-

ing to say something consistent about all of these.

To date, 46 projects have been studied, containing over 1.8 million lines of code. Over 150

programmers participated in these projects, and the data base contains over 40 million bytes of

data. The general SEL strategy is t carefully monitor a project and regularly collect data during

its development. The data is then entered in the SEL data base for analysis. The purpose of this

report is not to dwell on specific research results based on this data (See, for example, [8] for a

collection of published papers about the SEL) but is concerned with the problems of collecting

data, and what we have learned from this process.

HI. DATA COLLECTION

HI.I MODEL GENERATION

In order to fully take advantage of the available data, it must be known what information is

desired. The models and measures that are to be investigated must be defined. A random data

collection activity will usually miss relevant data, and then it will be too late to try and recover

that information.

In the SEL, two classes of measures were identified for study, and the data collection activi-

ties were oriented around those areas. The initial activities included:

a) Process Measures. Evaluating personnel and computer resources over time was a clear

need. One activity was to try and validate models that others have identifie (e.g., the Putnam

Norden Rayleigh curve [I]) while another activity was to try and build new models to fit the

empirical data (e.g., the Parr curve [7]). Once models were identified, their predictive nature was

studied as a means of resource scheduling.

The generation and correction of errors is another activity that h_ important economic

consequences. However, few models are available to build upon, so there was a need to develop

new models of errors and investigate their effects upon performance.

5-29

I

b) Product Measures. The size, structure, and complexity of software are other important

economic factors to consider. The evaluation of measures such as the software science measures

of Halstead [5], the.cyclomatic complexity of McCabe [6] and other measures developed within the

SEL was another early goal.

Reliability is a critical activity in most environments. In our particular environment, the

software that was previously developed was hi_,hly reliable (typically under 10 errors in an opera-

tional _stem), so that reliability, while important, was not a primary driving force in organizing

the SEL.

III.2 FORMS GENERATION

The first process in evaluating empiric-_l data is the data collection activity. Ideally, you

would like the process to be automated and transparent to the programmer. However, this was

not possible in this situation. We were interested in the human activities of software develop-

ment. Thus we needed detailed information about how programmers spend their time. Because of

this, a decision made early in the life of the SEL was that some data would be manually collected

using a series of forms.

There is a significant tradeoff consideration at this point. If we tried to collect too much

information, programmers would object to the interierence of the data collection activity on their

work. If too little information was asked, then there would be little point in collecting it.

We first developed an initial set of reporting forms. These have been revised several times

since then. Each time certain fields were clarified and the amount of information sought decreased

somewhat. At the present time, the effort required to fill out the forms is not significant. Initially

seven forms were developed. However, only three are used heavily. These seven forms axe:

a) Resource Summary. This form lists the number of hours per week spent by all personnel

on the project. This information is obtained mostly from the weekly time cards supplied by the

contractor. It is easy to obtain this data, and causes little overhead to a project. However, it is

very useful for monitoring global resource expenditures, especially in conjunction with the follow-

5-30

I
I

I
I
I
I

I
I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

I

I

I

I

ing Component Status Report.

b) Component Status Report. This form is submitted weekly by each programmer. It lists

for each component of the system (e.g., Fortran subroutine) the number of hours spent on each of

nine categories (e.g., design, code, test, review, etc.). The detail required by this form initially

caused some concern; however, in looking over past forms the average programmer worked on

only 5 to 10 components per week and only 2 or 3 activities per component. Thus the overhead

was not excessive. While the data is only approximate to the nearest hour, we believe that it is

more accurate than many other data collection procedures.

For example, many research papers give percentages for design, code, and test on a project.

However, these are usually taken from resource summary data and calendar date milestones. If a

design review occurs on a Friday, then all activities up until that date are design, with all activi-

ties the next week being code. In the SEL environment, there was approximately a 25 percent

error in using calendar dates for percent effort [4I. On four projects, approximately °,5 percent of

the design occurred during the coding phase, while almost half of the testing occurred prior to the

testing phase (Figure 1).The Component Status Report is critical for a proper view of develop-

ment activities.

c} Change Report Form. This form is completed after each change to a component is com-

pleted and tested. Due to the number of changes that a component undergoes during early

development, there was no attempt to capture this data before the component was "complete"

(i.e., through unit test}. Note that we are capturing "changes" and not simply "errors." All

modifications, due to errors or other considerations such as enhancements, are tracked.

Besides identifying the type of change, this form also identifies the cause of the change -

they are not always the same, although programmers have difficulty separating the two. The form

also asks for information on the time to find and correct an error, and what tools and techniques

were used in the process.

In some environments, the introduction of this form might cause programmers to object;

however, this was not the case in our environment. A standard change monitoring procedure was

5-31

I

in place, so we simply changed the form that this branch ofNASA GSFC was using before the

SEL was created.

These three forms provide the most important data collected by the SEL. Four other forms

have been created and used with limited success. These are:

d) Component Summary. This form identifies the characteristics of each component in a

system. It gives the size, complexity and interfaces. The goal was to have this form filled out at

least twice - once when the component was first identified during design, and again when it was

completed. Our experience was that the initial form was filled out before much relevant informa-

tion was known, and the data on the final form could be extracted automatically from the source

code data base.

e) Computer Run Analysis. An entry on this form is filled out for each computer run giving

characteristics of the run (execution time, purpose of run, components processed) as well as

whether the run met its objectives. This is one form that could be automated. However, the

usual range of operating system "Completion Codes" is inadequate for many purposes. For exam-

ple, a debugging run that was expected to fail at a certain statement, but ran to a successful exit,

would have a satisfactory completion code, yet it was a failure as a run since the desired error did

not occur.

An interactiv job submittal system could help. Before any run, the system could prompt for

some of this information. After the run, the system could a_k what happened. Since the current

NASA environment consists primarily of interactive editing with batch processing, such an online

process would have been difficult to implement.

f) Programmer Analyst Survey. This form attempts to characterize the experiences of the

programmers on the project in order to get a general profile of the project tea However, we

immediately ran into confidentiality problems concerning personnel records. We never got the

detailed information that we desired, but have obtained general comments on each programmer -

although the goal is NOT to rate programmers. If there is any hint of any of this data being used

for any sort of personnel action, then compliance drops sharply and the value of the data becomes

5-32

I

I

I
I

I
I
I

I
I

I
I
l

I

I
I

I
I

I

I

I
I
I

I
I
I

I
I

I
I
I

I
I

I
I
I

I

open to question.

g) General Project Summary. This is a form that provides a high-level description of a pro-

ject. Since the software is developed by NASA and contractor personnel, the form is somewhat

superfluous and the information is entered directly into the data base.

An important consideration in forms development is consistency in collecting data. Along

with each form a detailed instruction sheet was developed, as well as a glossary of relevant terms

like "component," "line of code," and "life cycle phase." For example, we chose the name "com-

ponenC rather than "subroutine" or "module" simply because those terms were well known (with

alternative meanings) and we did not want to evoke any preconceived but wrong image in the

minds of the participants. Even so, there was a great deal of confusion about the meanings of the

various terms. During the early days of the SEL, many meetings were held to explain the process

to programmers, since each programmer worked about one year on a project, after six years there

is a large core of personnel experienced in filling out our reporting forms..

111.3 DATA PROCESSING

After being filled out, each form is entered into a data base on a PDP 11/70 computer. In

addition to the forms previously described, analyzers were run over the source programs to extract

additional information, including lines of code and other measures such as the Halstead software

science measures.

Another step in forms processing is data validation. Someone must review the forms as they

are submitted. This is expensive, but necessary. It is a quick was to catch and correct errors. In

addition, the data entry program should check for data consistency and value ranges. For exam-

ple, if the program is to read in input in the format _,_vIDDYY, then a month input that is not a

number in the range from 01 to 12 must be rejected. A field requiring an input of A, B, or C

should reject any other value. Even though we manually check each form, a validation program

was more effective for catching errors.

5-33

I

All forms, especially the change report form, need to be reviewed by SEL personnel. Two

common errors in the Change report form are to turn in one change report form which actually

represented several errors, and the submission of multiple forms for the same error. From earlier

work over half of the change report forms were modified following a careful study of each form.

This is an expensive process, but needs to be done in order to have accurate data about your

environment.

Redundancy of data is another important consideration. Collecting the same or similar data

on multiple forms allows for cross validation. There should be a reasonable correlation between

the collected values. The resource summary and component status reports have been the easiest

to validate. The Computer Run Analysis form is important for validating some of the change

report data; however, limited availability of this form has handicapped some of this validation

work. Because of that, it is important to manually check each change report form for selected

projects.

IV RESEARCH ACTIVITIES

IV.1 PREVIOUS RESEARCH

Research in the SEL has centered on resource and error models and on predicting software

productivity. ([8] is a collection of relevant papers published over the last few years.) Perhaps the

most important conclusion - although obvious in hindsight - which is relevant to this current dis-

cussion is that there is no typical software development environment.

All models include parameters - factors which represent variables in that environment (Fig-

ure 2 representsa listof factorsfrom the SEL as well as two otherstudies[I0][3].)When models

b-..sedon other environments are applied to the NASA environment, they invariablyfail.Does

that mean that NASA isdifferent?unique?much betteror much worse than other environments?

For example, SEL programmers show much higher productivityin linesof code per week than in

other organizations.Does that mean that other organizationsshould pirateaway NASA's staff?.

5-34

I
I

I
I

I
I

I
I
I

i
I

I

I
I

I
I

I
I
I

I

I
I
I

I
I
I

I

I
I
I
I

I
I

I
I
I

I

Perhaps, but another explanation becomes apparent when NASA's environment is studied in

detail. In the $EL, most of the projects are similar ground support software systems. Thus the top

level design for these projects are similar. Programmers are experts at this particular problem -

thus high productivity. Many factors affecting requirements and design do not apply here. On the

other hand, a contractor that bids on a variety of projects - an operating system, a compiler, a

data base management system, an attitude orbit determination program, etc. does not build an

institutional knowledge about any one particular environment. Requirements and design factors

now become significant in this environment and productivity drops.

All companies operate in a different manner. Company policy as to working conditions, com-

puter usage (batch or interactive), leave policy and salaries, management, support tools, etc. all

affect productivity. Thus each organization (probably even separate divisions within a single

organization) has a different structure and a different set of parameters.

For this reason, one must first calibrate any model to be applied. First develop a quantita-

tive relationship using many factors. Chose those factors relevant to your environment. Calibrate

the equations based upon previous projects, and then use the calibrated model for prediction [2].

It is this important calibration step that is missing from most models.

For example, if a baseline equation is given by:

Effort -- a * size'+ b

then one can fit a and b from historical data; and the units of size can be determined from those

relevant to your environment - such as lines of code, lines of source (including comments), number

of modules, number of output statements, etc. Thus instead of a single model, there is a class of

models t_ilored to each environment.

IV.2 PROTOTYPES

Over the past few years various methodologies have been studied by the SEL. A current

SEL activity is the development of software prototypes. Currently software fs designed, built and

delivered. Rarely is the product evaluated in advance. However, the use of engineering prototypes

5-35

I

in a preliminary evaluation is starting to be discussed by software engineering professionals [9].

While the term is appearing with increasing frequency, what does it really mean? Is it a

quick and dirty throw-a-way implementation or a carefully designed subset of a final implementa-

tion? What are the cost and reliability parameters for a prototype compared to a full implementa-

tion.

Currently data on the subject is meagre and usually based on small projects [12]. The SEL

is now investigating a larger implementation with some techniques as applied to previous SEL

projects.

Briefly, the target implementation is an integrated support system for flight dynamics

research. Currently, experimenters (NASA scientists), in trying a new spacecraft model (e.g., a

new orbit calculation) must understand the structure of the existing system, access the Fortran

source modules, modify them, rebuild the operating program, test it, and then run the experiment

- a complex and costly process. The new system is expected to _understand" several flight dynam-

ics systems and to provide a higher level command language that guides the experimenter through

the process of building a new version of a system, even if the experimenter is not thoroughly fami-

liar with the existing system. This system is basically a command language interpreter with a

complex data dictionary describing the underlying flight dynamics subsystems.

This program is quite different from existing software produced by NASA, so the plan is to

prototype it first. Two classes of data will be obtained from the prototype:

a) Characteristics of the process. The Computer Science world has little information avail-

able about prototyping, thus this data will add to the general knowledge about this process. What

does the life cycle of a prototype look like? How much time is spent in design? code? test? Are

errors crucial or can they be side-stepped in the prototype somewhat by "eliminating" the

offending feature ia the requirements?

Similarly, how does prototyping effect the later full implementation? Will design be easier?

Will productivity be higher? Will the overall cost of the system plus prototype be less than the

cost of just the full system? Will reliability be higher or the interface more "user friendly? _

5-36

l

I
I

I
I
I

I
I

I
I

I
I

I

I
I

I

I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

b) Predictive nature of the prototype. Once a prototype is built, is it successful? How does

one measure success? Will the full system be successful based upon an evaluation of the proto-

type? A set of measures will be built into the prototype to provide some of these answers.

A baseline study will be made of how experiments are conducted - the cost of machine and

people resources will be measured. Some of these experiments will be repeated with the prototype

to derive a cost. These will be used to predict the cost of using the full system. If acceptable, then

that design will be used for the full implementation, if not, then the design will be modified to

correct the problem in the full implementation.

In addition, data will be collected on how often features are used in the prototype, and also

how often the prototype is being circumvented in order to provide features that currently do not

exist but are needed by the users.

Once the final system is built, the predictive model can be validated in order to aid ia

developing a theory of software prototypes.

V, CONCLUSIONS

The Software Engineering Laboratory has been in existence for six years and has studied

almost 40 projects. The empirical data that has been collected supports several conclusions:

(1) Data collection is hard and expensive. It must be dynamically collected during the

development of a project and not after completion.

(2) Data must be validated. Error rates on manually filled out forms are high. A lack of

standardized nomenclature for the field hurts consistency. Much effort must go in training person-

nel to understand the data collection methodology.

(3) Each software development environment is unique. Baseline equations must first be cali-

brated with past projects before a model can be used in the future.

(4) Little is known, but much is being said, about software prototypes. The SEL is

currently studying this issue as part of its ongoing activities.

5-37

I

VL ACKNO_LEDGEMENTS

This paper was supported by NASA grant NSG-5123 to the University of Maryland. The

SEL is under the direction of Frank McGarry of NASA GSFC. Dr. Victor Basili directs the

University of Maryland activities of the SEL, and Jerry Page is the coordinator for Computer Sci-

ences Corporation. The results described in this report were developed by the author, the above

mentioned persons, as well as several graduate students at the University of Maryland and

researchers at CSC. The author is indebted to David Card of CSC for his detailed comments on

an earlier draft of this paper.

VH. BIBLIOGRAPHY

[1] Basili V. R. and M. V. Zelkowitz, Analyzing medium scale software developments, Third Inter-
national Conference on Software Engineering, Atlanta GA, May 1978.

[2] Basili V. R., Models and metrics for software management and engineering, ASME Advances
in Computer Technology 1, January, 1980.

[3] Boehm B., Software Engineering Economics, Prentice Hall, 1981.

[4] Chen E. and Zelkowitz M. V., Use of cluster analysis to evaluate software engineering metho-
dologies, Fifth International Conference on Software Engineering, San Diego CA, March, 1981.

[5] Halstead M., Elements of Software Science, American Elsevier, 1977.

[6] McCabe T., A complexity measure, IEEE Transactions on Software Engineering 2, 1976.

[7] Parr F., An alternative to the Rayleigh Curve model for software development, IEEE Transac-
tions on software engineering 6, 1980.

[8] Collected Software Engineering Papers: Volume 1, SEL-82-004, Code 582.1, NASA GSFC,
July, 1982.

[9] ACM SIGSOFT Software Engineering Symposium: Workshop on Rapid Prototyping, Colum-
bia, MD, April, 1982.

[10] Walston C. and C. Felix, A method of programming measurement and estimation, IBM Sys-
tems Journal 16, No. 1, 1977.

[11] Zelkowitz M. V., A. C. Shaw and J. D. Gannon, Principles of Software Engineering and
Design, Prentice Hall, 1979.

[12] Zelkowitz M. V., A c_e study in rapid prototyping Software Practice and Ezperience 10,
1037-1042, 1980.

5-38

I

I
I

I

I
I
I
I

I
I

I
I

I

I
I
I

I
I
I

I

I
I

I
I
I

I
I

i
I
I

I

I
I

I
I

I
I

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-

neerin 9 Workshop, August 1976

SEL-77-001, The Software Engineerin@ Laboratory,

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software En-

gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu

and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages

Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design

and Module Descriptions, E. M. O'Neill, S. R. Waligora, and

C. E. Goorevich, February 1978

ISEL-78-002, FORTRAN Static Source Code Analyzer (SAP)

User's Guide, E. M. O'Neill, S. R. Waligora, and

C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program

(SAP) User's Guide (Revision i), W. J. Decker and

W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Desig N ,

K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)

PDP-II/70 User's Guide, D. S. Wilson and B. Chu, September

1978

B-I

I

SEL-78-005, Proceedings From the Third Summer Software Engi-

neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,

M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-

ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September

1979

SEL-79-005, Proceedings From the Fourth Summer Software En-

gineerin@ Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for

Code 580 Confiquration Analysis Tool (CAT), F. K. Banks,

A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language7

Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer Systems/

Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

ISEL-80-004, System Description and User's Guide for Code

580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-

scription and User's Guide (Revision i), W. Decker and

W. Taylor, December 1982

SEL-80-005, A Study of the Musa Reliability Model,

A. M. Miller, November 1980

B-2

I
I

I
I

I
I
I

I
I

I
I

I

I
I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i,|

I

I

SEL-80-006, Proceedings From the Fifth Annual Software Engi-

neerin@ Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

ISEL-81-001, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

ISEL-81-002, Software Engineering Laboratory (SEL) Data

Base Organization and User's Guide, D. C. Wyckoff, G. Page,

and F. E. McGarry, September 1981

SEL-81-102, Software Engineerin @ Laboratory (SEL) Data Base

Organization and User's Guide Revision i, P. Lo and

D. Wyckoff, July 1983

ISEL-81-003, Data Base Maintenance System (DBAM) User's

Guide and System Description, D. N. Card, D. C. Wyckoff, and

G. Page, September 1981

SEL-81-103, Software Engineering Laboratory (SEL) Data Base

Maintenance System (DBAM) User's Guide and System Descrip-

tion, P. Lo and D. Card, July 1983

ISEL-81-004, The Software Engineering Laboratory,

D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

1SEL-81-005, Standard Approach to Software Development,

V. E. Church, F. E. McGarry, G. Page, et al., September 1981

ISEL-81-105, Recommended Approach to Software Development,

S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-205, Recommended Approach to Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-81-006, Software Engineering Laboratory (SEL) Document

Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

1SEL-81-007, Software Engineering Laboratory (SEL) Com-

pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,

et al., February 1981

B-3

I

SEL-81-107, Software Engineering Laboratory (SEL) Compendium

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,

March 1981

lSEL-81-010, Performance and Evaluation of an Independent

Software Verification and Integration Process, G. Page and

F. E. McGarry, May 1981

SEL-81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodology for Flight Dynamics, G. Page

and F. McGarry, December 1983

SEL-81-011, Evaluating Software Development by Analysis of

Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.

Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-

neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering

Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation of Management Measures of Software

Development, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program

(SAP) System Description, W. A. Taylor and W. J. Decker,

August 1982

SEL-82-003, Software Engineering Laboratory (SEL) Data Base

Reporting Software User's Guide and System Description,

P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-

ume l, July 1982

ISEL-82-005, Glossary of Software Engineering Laboratory

Terms, M. G. Rohleder, December 1982

B-4

I

I

I
I

I
I
I

I
I

I
I
I

I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

SEL-82-I05, Glossary of Software Engineering Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

lSEL-82-006, Annotated Bibliography of Software Engineer-

ing Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-106, Annotated Bibliography of Software Engineering

Laboratory Literature, D. N. Card, T. A. Babst, and

F. E. McGarry, November 1983

SEL-82-007, Proceedings From the Seventh Annual Software

Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-83-001, Software Cost Estimation Experiences,

F. E. McGarry, G. Page, D. N. Card, et al., November 1983

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., November 1983

SEL-83-003, Collected Software Engineering Papers: Vol-

ume II, November 1983

SEL-83-004, SEL Data Base Retrieval System (DARES) User's

Guide, T. A. Babst and W. J. Decker, November 1983

SEL-83-005, SEL Data Base Retrieval System (DARES) System

Description, P. Lo and W. J. Decker, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic

Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-

gineering Workshop, November 1983

SEL-RELATED LITERATURE

2Agresti, W. W. , F. E. McGarry, D. N. Card, et al.,

"Measuring Software Technology," Program Transformation and

Programming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

B-5

I

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"

Computer Sciences Corporation, Technical Memorandum, March

1980

3Basili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Computer Technolog[,

January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-

ment and Estimation," University of Maryland, Technical Mem-

orandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineering. New York: Computer Societies

Press, 1980 (also designated SEL-80-008)

3Basili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-

lems?", Journal of Systems and Software, February 1981,

vol. 2, no. 1

3Basili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

2Basili, V. R., and B. T. Perricone, Software Errors and

Complexity: An Empirical Investigation, University of

Maryland, Technical Report TR-II95, August 1982

3Basili, V. R., and T. Phillips, "Evaluating and Com-

paring Software Metrics in the Software Engineering Labora-

tory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric

Analysis and Data Validation Across FORTRAN Pr'ojects," IEE____EE

Transactions on Software Engineering, November 1983

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedings of the Workshop

on Quantitative Software Models for Reliability, Complexity

and Cost, October 1979

2Basili, V.R., and D. M. Weiss, A Methodology for Col-

lecting Valid Software Engineering Data, University of

Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedings of the Software Life

Cycle Management Workshop, September 1977

B-6

I
I

I
I
I
I

I
I

I

I
I

I

I
I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

3Basili, V. R., and M. V. Zelkowitz, "Operation of the

Software Engineering Laboratory," Proceedings of the Second

Software Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment,"

Computers and Structures, August 1978, vol. i0

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedings of the Third Interna-

tional Conference on Software Engineering. New York: Com-

puter Societies Press, 1978

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedings of the

Fifteenth Annual Conference on Computer Personnel Research,

August 1977

2Card, D. N., "Early Estimation of Resource Expenditures

and Program Size," Computer Sciences Corporation, Tech-

nical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Tech-

niques for Resource Estimation," Computer Sciences Cor-

poration, Technical Memorandum, November 1982

Card, D. N., and V. E. Church, "Analysis Software Require-

ments for the Data Retrieval System," Computer Sciences

Corporation Technical Memorandum, March 1983

Card, D. N., and V. E. Church, "A Plan of Analysis for

Software Engineering Laboratory Data," Computer Sciences

Corporation Technical Memorandum, March 1983

Card, D. N., and M. G. Rohleder, "Report of Data Expansion

Efforts," Computer Sciences Corporation, Technical Memoran-

dum, September 1982

3Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceed-

ings of the Fifth International Conference on Software

Engineering. New York: Computer Societies Press, 1981

2Doerflinger, C. W., and V. R. Basili, "Monitoring Soft-

ware Development Through Dynamic Variables," Proceedings of

the Seventh International Computer Software and Applications

Conference. New York: Computer Societies Press, 1983

Freburger, K., "A Model of the Software Life Cycle" (paper

prepared for the University of Maryland, December 1978)

B-7

i

Higher Order Software, Inc., TR-9, A Demonstration of AXES

for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also

designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-

pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"

(paper prepared for the University of Maryland, December

1978)

McGarry, F. E., G. Page, and R. D. Werking, Software Devel-

opment History of the Dynamics Explorer (DE) Attitude Ground

Support system (AGSS), June 1983

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December

1978)

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), March
1980

" Computer"Software Engineering Course Evaluation,Page, G.,

Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report

Form," NASA, Goddard Space Flight Center, Technical Memoran-

dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and

Management of Software Complexity" (paper prepared for the

University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher

Order Languages Study: Addendum," Martin Marietta Corpora-

tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-

cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research

Laboratory, Technical Memorandum, December 1977

I,
"Resource Model Testing and Information,Williamson, I. M.,

Naval Research Laboratory, Tethnical Memorandum, July 1979

B-8

I

I

I
I
I

I
I

I
I

I
I

I

I
I

I
I

I
I
I

I

I

I

I

I
I

I
I

I
I
I

I

I
I

I
I

I
I

I

3Zelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedings of the Twelfth Conference on

the Interface of Statistics and Computer Science.

New York: Computer Societies Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedings of the Soft-

ware Life Cycle Management Workshop, September 1977

iThis document superseded by revised document.

2This article also appears in SEL-83-003, Collected Soft-

ware Engineering Papers: Volume II, November 1983.

B-9

